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Abstract
Despite the considerable role of aquatic plant-associated bacteria in host plant growth and nutrient cycling in aquatic environ-
ments, the mode of their plant colonization has hardly been understood. This study examined the colonization and competition
dynamics of a plant growth-promoting bacterium (PGPB) and two plant growth-inhibiting bacteria (PGIB) in the aquatic plant
Lemna minor (common duckweed). When inoculated separately to L. minor, each bacterial strain quickly colonized at approx-
imately 106 cells per milligram (plant fresh weight) and kept similar populations throughout the 7-day cultivation time. The
results of two-membered co-inoculation assays revealed that the PGPB strain Aquitalea magnusonii H3 consistently competi-
tively excluded the PGIB strain Acinetobacter ursingiiM3, and strain H3 co-existed at almost 1:1 proportion with another PGIB
strain, Asticcacaulis excentricus M6, regardless of the inoculation ratios (99:1–1:99) and inoculation order. We also found that
A. magnusonii H3 exerted its growth-promoting effect over the negative effects of the two PGIB strains even when only a small
amount was inoculated, probably due to its excellent competitive colonization ability. These experimental results demonstrate
that there is a constant ecological equilibrium state involved in the bacterial colonization of aquatic plants.
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Introduction

Aquatic plants that proliferate in contaminated lakes or wet-
lands have attracted much attention in environmental technol-
ogy because they can naturally remove nutrient salts, toxic
heavy metals, and organic compounds from water bodies [1,

2]. Recently, they are also emerging as next-generation energy
crops for biofuel production that do not compete with terres-
trial food crops [3, 4]. Floating aquatic plants such as duck-
weed and water hyacinth are particularly competent for those
purposes because of their extremely high growth rate and ease
in harvesting [5, 6]. Therefore, attention has been directed
toward establishing industrial-scale cultivation of these plants,
offering co-beneficial systems performing wastewater treat-
ment coupled with useful biomass production [7–13].

It has been recognized that bacteria co-existing with aquat-
ic plants significantly affect the performance of wastewater
treatment and biomass production through growth-
promoting and growth-inhibiting effects on the host aquatic
plants [14, 15], detoxifying pollutant elements such as nitro-
gen and metals by oxidation and reduction reactions [16–19],
and degrading various organic pollutants, including recalci-
trant ones [20, 21]. Several bacterial strains that are beneficial
or efficient in the abovementioned aspects have been isolated
from aquatic plants in recent studies [22–25]. These studies
indicate the possibility of improved performance of aquatic
plant systems by engineering such beneficial plant–bacteria
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interactions. In agriculture, the inoculation of plant growth-
promoting bacteria (PGPB) has been intensively researched
as a promising technology to increase crop production [26].
Similarly, some recent studies have attempted to introduce
beneficial bacteria to aquatic plant systems and have reported
enhanced biomass production and/or removal of toxic com-
pounds in lab-scale experiments [27–30].

However, the delivery of those bacterial inoculants to plant
surfaces in non-sterile hydrocultures is a big challenge.
According to current knowledge of soil–plant–microbe inter-
actions, the plant rhizosphere is a favorable habitat for various
bacterial species, and there is intense competition within this
habitat [31, 32]. Consequently, the introduction of beneficial
bacterial strains, such as PGPB, has often failed to exert the
desired effects because of unsuccessful colonization or com-
petition with indigenous microorganisms on the target plants
[33, 34]. Detailed understanding about competitive
phytosphere colonization by bacteria is thus required to effec-
tively and reliably utilize plant–bacteria symbiosis. To the best
of our knowledge, however, no study has specifically exam-
ined the colonization and competition of aquatic plant-
associated bacteria.

Here, we report the research results of the colonization and
competition dynamics of bacterial strains in the phytosphere
of Lemna minor (common duckweed). Aquitalea magnusonii
H3, a PGPB isolated from duckweed, was used as a model
strain for the inoculant. Because strain H3 is the sole PGPB
that presents constant growth-promoting effects in the pres-
ence of other bacterial strains, as shown in a study by Ishizawa
et al. [15], revealing its population dynamics provides practi-
cal knowledge for the effective use of PGPBs in non-sterilized
environments. Two plant growth-inhibiting bacteria (PGIB)
isolated from L. minor, Acinetobacter ursingii M3 and
Asticcacaulis excentricus M6, were used as competitors. A
series of gnotobiotic experiments was performed to evaluate
the colonization dynamics of the bacterial strains and its rela-
tion to the effects on plant growth.

Methods

Plant and Bacterial Strains

Common duckweed (Lemna minor, RDSC 5512), collected
from the botanical garden of Hokkaido University (Sapporo,
Japan), was sterilized as described previously [35]. Plants
were successively cultured in modified Hoagland medium
[36] in a growth chamber at 28 °C, with a light intensity of
80 μmol m−2 s−1 and a photoperiod of 16 h/8 h–day/night. All
plant cultivations in this study were conducted under the same
conditions.

Three gram-negative bacterial strains (A. magnusonii H3,
A. ursingii M3, and A. excentricus M6) were previously

isolated from the same L. minor clone and characterized for
their effects on L. minor growth [15, 37]. These bacterial
strains were kept on solid 1/10 LB medium at 28 °C or in
25% glycerol at − 80 °C. For each experiment, the cells were
grown to a late log phase in 20 mL of LB medium at 28 °C
with shaking at 120 rpm.

Colonization of Single Bacterial Strains

For colonization assays, bacterial cultures were pelleted (4 °C,
10,000×g, 5 min), washed twice with modified Hoagland me-
dium, and inoculated into 60-mL Hoagland medium at cell
densities of 104, 105, and 106 CFU mL−1. Then, 10 fronds of
L. minorwere cultured in the cell suspensions for nine growth
periods (1 s, 1 h, 3 h, 6 h, 12 h, 1 day, 3 days, 5 days, and
7 days) in separate flasks. At the end of the co-cultivations,
plants were harvested, and the excess water was gently
absorbed with a sterile paper towel. The fresh weight of the
plants was then measured, and the samples were preserved at
− 80 °C until further use. The quantities of bacterial cells at-
tached to the plants were determined by quantitative PCR
(qPCR) analysis as described below.

Competitive Colonization Assays

Co-colonization assays were performed with the same proce-
dure as described above, using mixtures of strains H3–M3 and
H3–M6 prepared in CFU ratios of 100:0, 99:1, 90:10, 50:50,
10:90, 1:99, and 0:100 at a total cell density of 105 CFUmL−1.
Samples for qPCR analysis were taken 1 h, 1 day, and 7 days
after the inoculation. In addition, from the plants that were co-
cultivated for 7 days with each of the bacterial species (H3,
M3, and M6) and 50:50 mixtures of H3–M3 and H3–M6,
samples were taken by separating plant bodies into four parts
using tweezers.

Next, to evaluate the influence of inoculation order on the
results of co-colonization, similar experiments were conduct-
ed by sequentially inoculating bacterial strains. Sterile
L. minor was first inoculated with 105 CFU mL−1 of each of
the strains H3, M3, or M6 and co-cultivated for 24 h to allow
them to fully colonize the plants. Ten fronds of the pre-treated
plants were then transplanted to a new medium and inoculated
with 105 CFUmL−1 of each of the strains H3, M3, orM6. The
plant samples for qPCR analysis were taken 1 h, 1 day, and
7 days after the second inoculation.

qPCR Analysis

DNA was extracted from the samples by the CTAB method
[38] empirically modified as detailed below. First, the samples
were homogenized with 0.1 M Tris-HCl buffer, pH 8.0, using
a high-power homogenizer (ASG50, ASONE, Aichi, Japan)
at 6000 rpm for 30 s. Then, 100 μL of the homogenate
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(corresponding to 10-mg fresh weight of plants) was mixed
with 500 μL of CTAB buffer (100 mM Tris-HCl, pH 8.0; 1 M
NaCl; 50 mM EDTA; 1% polyvinylpyrrolidone k30; 2%
CTAB) and 50 μL of 2-mercaptoethanol and incubated at
65 °C for 2 h with shaking at 170 rpm. Extracts were purified
twice in one volume of chloroform–isoamyl alcohol (24:1),
precipitated in one volume of isopropanol, and washed in
500 μL of 70% ethanol. DNA pellets were finally re-
suspended in 100 μL of TE buffer.

SYBRGreen qPCR analysiswas performed in a 96-well plate
using an ABI Prism 7000 sequence detection system (Applied
Biosystems, Foster City, CA). The 20-μL reaction mixture
contained 10 μL of Power SYBR® Green PCR Master Mix
(Applied Biosystems), 2 μL of DNA template, and 0.25 μM of
forward and reverse primers specific to each of strains H3, M3,
andM6 (Table S1). Positive amplification and specificity of these
primer pairs were verified by conventional PCR in relation to
DNA templates extracted from each of strains H3, M3, M6, and
sterile L. minor (data not shown). The PCR cycles comprised
initial incubation at 50 °C for 2 min, denaturation at 95 °C for
10 min, and 40 cycles of 95 °C for 15 s and 60 °C (strains M3
and M6) or 58 °C (strain H3) for 1 min. A standard curve was
generated for every run using a known copy number (ca. 102 to
107) of the DNA fragment cloned into a PMD20-T vector
(Takara Bio Inc., Shiga, Japan). The cell numbers of the bacterial
strains were determined by dividing the gene copy number
(quantified with qPCR analysis) by the number of the target
sequence in the complete genome of each strain (Table S1).

Plant Growth Evaluation

During the competitive colonization assays, the frond number
of L. minor was periodically counted to evaluate the effects of
bacterial strains on plant growth. The effects on plant growth
(EPG) were calculated using the following formula:

EPG %ð Þ ¼ 100� FNt−FNcð Þ=FNc;
where FNt is the frond number of bacteria-treated L. minor at
day 7 and FNc is that of bacteria-free control plants. All col-
onization assays were performed in triplicate. Hence, the stan-
dard deviations (SD) for EPG were calculated as follows:

SD EPGð Þ ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD FNtð Þf g2 þ SD FNcð Þf g2
q

=FNc:

Scanning Electron Microscopy

For scanning electron microscopy (SEM), L. minor plants co-
cultivated for 1 day with 105 CFU mL−1 of bacterial strains
were immersed in fixing solution (2% glutaraldehyde, 2%
formaldehyde, 0.1 M phosphate buffer) for 12 h at 4 °C and
post-fixed with 1% osmium tetroxide for 30 min at room

temperature. After fixation, the samples were coated with an
osmium coater (HPC-1S; Vacuum Device, Ibaragi, Japan) and
observed using SEM (S-4800; Hitachi High-Technologies,
Tokyo, Japan) at various magnifications.

Physiological Assays

Strains H3, M3, and M6 were assayed for physiological traits
that are known to be associated with plant colonization: bio-
film formation, swimming motility, and capacity to utilize
carbon sources. In addition, direct growth inhibition among
the bacterial strains was also examined to better understand
their competitive relationships.

Biofilm formation was assayed principally by the method of
Pedersen [39]. First, 105 CFUmL−1 of each strain was incubat-
ed at 28 °C for 24 h in 300 μL of fresh LB medium in 1.5-mL
polypropylene test tubes. The tubes were then rinsed once with
sterile distilled water and filled with 400 μL of 0.1% crystal
violet solution before incubation for 20 min at room tempera-
ture. After rinsing twice with 1 mL of distilled water, pigments
were extracted with 500 μL of 95% ethanol and quantified by
measuring the absorbance at 590 nm (A590) using a spectro-
photometer (UV-1850; Shimadzu, Kyoto, Japan).

Swimming motility was tested by spotting 1 μL of log cul-
tures on semisolid 1/10 LB medium supplemented with 0.1%
casein hydrolysate and 0.2% purified agar [40]. The expansion
of the colonies was observed after incubation at 28 °C for 5 days.

The capacity of bacterial strains to utilize 95 different car-
bon sources (listed in Table S2) was analyzed using Biolog
GN2 MicroPlate (Biolog, Hayward, CA) according to the
manufacturer’s protocol.

A colony inhibition assay [41] was performed by spotting
5 μL of log cultures of each strain (diluted to 106 CFU mL−1)
on solid LB medium containing 1.5% (w/v) purified agar in
the vicinity of each other. Themorphology of the colonies was
observed after incubation at 28 °C for 7 days.

Statistical Analysis

For the data of plant growth and biofilm formation test, sig-
nificance was analyzed by one-way analysis of variance.
Duncan’s multiple-range test was performed to separate the
means. Significance at p < 0.05 was applied. Statistical analy-
ses were performed using R software v3.2.3 (http://www.r-
project.org).

Results

Time Course of Single Bacterial Colonizations

The cell number of strains H3, M3, and M6 attached on
L. minor was monitored by qPCR analysis at several time
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points after the inoculation of 104, 105, and 106 CFU mL−1.
As shown in Fig. 1, all bacterial strains fully colonized
plants within approximately 1 day when separately inocu-
lated to L. minor. The time course could be divided into an
Binitial colonization phase^ (where bacterial cells that col-
onized plants increase almost exponentially) and a
Bstationary phase^ (where the colonized cell density stabi-
lizes at approximately 106 cells per milligram plant fresh
weight; approximately one frond). It was observed that the
inoculation density did not affect the population at the sta-
tionary phase, and a larger inoculation density tended to
enable quicker colonization at the initial colonization
phase, particularly for strains H3 and M6.

Effects of Initial Abundance on Co-colonization

The population dynamics of bacterial strains that colonized
L. minor plants were monitored after co-inoculating strain
H3 and each of two PGIB strains (M3 and M6) in different
inoculation ratios. Figure 2 shows the abundance of colonized
bacterial cells 1 h, 1 day, and 7 days after inoculation. On the
basis of the colonization time course analyzed in the previous
experiments, these cultivation terms (1 h, 1 day, and 7 days)
would represent the beginning of the initial colonization
phase, near-end of the initial colonization phase, and late sta-
tionary phase, respectively.

In the co-colonization of strains H3 and M3, strain H3
exhibited a larger population than strainM3 after 1 h, although
the proportions of strains H3 and M3 were similar to the in-
oculation ratios after 1 day (Fig. 2). The relative abundance of
strain H3 notably increased after 1 day and reached 44–97%
of the total bacterial cells after 7 days. The consistent popula-
tion shifts may indicate a superior competitive ability of strain
H3 to strain M3. In contrast, the proportions of strain H3 and
M6 cells that colonized L. minor converged to almost equal in
all inoculation ratios from 99:1 to 1:99, suggesting that these
strains built a constant co-existing relationship. The coloniza-
tion density of strain H3 was quite stable at approximately 106

cells mg−1, irrespective of the presence or absence of strain
M6, and the colonization density of strain M6 decreased to
approximately half when co-inoculated with strain H3.

We also evaluated the percent increase/decrease of
L. minor growth compared with the bacteria-free control by
the co-inoculations of PGPB and PGIB strains (Table 1).
When inoculated separately (100:0 or 0:100), strain H3 pro-
moted and strains M3 and M6 inhibited L. minor growth, as
expected. In competitive conditions, the plant growth seemed
to reflect the relative abundance of PGPB and PGIB strains, as
shown in Fig. 2, and strain H3 was found to improve L. minor
growth or at least negate the negative effects of PGIB strains
even when only 1% was inoculated. Despite the significant
change in growth speed, change in plant morphology was not
observed.

Influence of Inoculation Order on Colonization
of Bacteria

To test if inoculation order affects the competitive outcome,
the PGPB and PGIB strains were sequentially inoculated to
L. minor with a 24-h interval. According to the colonization
time course shown in Fig. 1, an interval of 24 h is enough for
the bacterial strains to fully colonize the plant. Results showed
that noticeable invasions of lately introduced bacteria were
observed within 1 day after the second inoculations in all
combinations and orders of inoculations (Fig. 3). The popula-
tion thereby shifted to the dominant colonization of strain H3
over M3 or the co-existence of strains H3 and M6, similar to
the previous experiments. The colonization density of strain
H3 was quite constant at approximately 106 cells mg−1 and

Fig. 1 Colonization time courses of three bacterial strains onto L. minor
plants. Sterilized L. minor was inoculated with 104, 105, and
106 CFU mL−1 of strains H3, M3, and M6, and the numbers of
bacterial cells attached to plants after 1-s, 1-h, 3-h, 6-h, 12-h, 1-day, 3-
day, 5-day, and 7-day cultivations are plotted. Error bars show the stan-
dard deviations (n = 3)
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that of strains M3 and M6 was significantly decreased under
co-inoculation conditions.

As shown in Table 1, the growth-regulating effects of
PGPB and PGIB strains were consistently observed when
the same bacteria were used in preliminary and post-inocula-
tions. The growth-promoting effects of strain H3 were main-
tained even in the presence of PGIB strains and were not
significantly influenced by the inoculation order.

Distribution of Bacterial Strains on Duckweed

The distribution of the three bacterial strains after the coloni-
zation tests was further analyzed by separating plant bodies
into four parts: mother frond (MF), daughter frond (DF), up-
per root (UR), and root tip (RT). In the single-inoculation
conditions, strain H3 colonized more frond parts (MF and
DF) than root parts (UR and RT) and strains M3 and M6
colonized fronds and roots evenly (Fig. 4). There was no sig-
nificant difference in the distribution of each strain between
frond samples (MF and DF) and between root samples (UR
and RT). The results of the co-inoculation showed that the

distribution patterns of each bacterial strain were not signifi-
cantly influenced by the presence and absence of counterparts.

Morphology of Colonized Cells

SEM revealed that strain H3 densely colonized the underside
of L. minor fronds, forming microcolonies comprising 1–20
cells (Fig. 5a, b). Massive colonization was observed particu-
larly around the root base of the frond. Strain H3 also distrib-
uted on the upper side of fronds and roots with a similar
appearance. In contrast, strains M3 and M6 colonized plants
by forming biofilm structures that were sparsely distributed in
both frond and root parts (Fig. 5c, d). Similar appearances of
colonized cells were observed even in competitive conditions
(data not shown).

Physiological Traits

Strain M6 showed eminently superior biofilm formation abil-
ity in the in vitro assay (Fig. 6a). Strain H3, which did not

Fig. 2 Competitive plant
colonization of strain H3 against
strains M3 and M6. A total of
105 CFUmL−1 of bacterial strains
was inoculated to L. minor
cultures with different inoculation
ratios, and the bacterial
colonization was quantified by
qPCR analysis. Results are shown
as the means of cell numbers
attached to plants (mg−1) after 1 h,
1 day, and 7 days of co-
cultivations. Error bars show the
standard deviations (n = 3)
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form a biofilm-like structure on plants, showed the least ability
in this assay.

The motility assay revealed that strains H3 and M6 possess
swimmingmotility, and strainM3was non-motile, supporting
its identification as an Acinetobacter bacterium (Fig. 6b).
Because only weak colony expansions were observed without

the addition of casein hydrolysate (data not shown), it seems
that chemotaxis toward amino acids plays an important role in
their motility.

Among 95 different carbon sources included in the Biolog
GN2 plate, strains H3, M3, and M6 could utilize 38, 40, and
22 compounds, respectively (Table S2). The pairs H3–M3 and
H3–M6 shared 24 and 14 compounds, respectively.

As shown in Fig. 6c, d, no one-sided colony inhibition was
observed among the strains used in this study. In contrast, it
was found that the colonies of strains H3 and M6 overlapped
without recognizable growth impairment, whereas colony de-
velopment was impaired at the border of H3 and M3 colonies.

Discussion

With the limited impact of environmental context and sur-
rounding bacterial communities, plant species, including
aquatic plants, are thought to harbor highly conserved
microbiomes [42–44]. This, in turn, suggests that there
are large differences in the competitive colonization abil-
ities of environmental bacteria, which principally deter-
mine the composition of the phytosphere microbiome
[45]. In contrast, other factors such as initial species abun-
dance and colonization order can also confer substantial
influence on the phytosphere microbial population
[46–48]. The competitive Lotka–Volterra model states that
initial species abundance even possibly influences the
winner of inter-specific competition [49].

On the basis of these facts, in the present study, a series of
experiments was performed to determine the colonization dy-
namics of three model bacterial strains onto L. minor in

Fig. 3 Competitive plant colonization of strains H3, M3, and M6 that
were sequentially inoculated to L. minor. L. minor was first inoculated
with each of strains H3,M3, andM6 for 24 h and then inoculated with the
same or another bacterial strain. Text on the top left indicates the bacterial
strain used for the first inoculation (before the arrows) and second

inoculation (after the arrows). Results are shown as the means of cell
numbers attached to plants (mg−1) at the start (0 h) and after 1 h, 1 day,
and 7 days of the second inoculation. Error bars show the standard devi-
ations (n = 3)

Table 1 Effects of bacterial inoculation on L. minor growth.Mean ± SD
(n = 3) values of percent increase or decrease in frond number after 7-day
cultivation (compared with aseptic control) are shown as EPGs. Values
sharing the same letter within the same series of experiments indicate no
significant difference. Aseptic control plants were prepared in each of
four groups of experiments, and there were 90.3 ± 4.5, 88.7 ± 1.7, 94.3
± 4.9, and 96.3 ± 1.9 fronds in the controls for the experiments of H3:M3,
H3:M6, sequential inoculation of H3 vs M3, and that of H3 vs M6,
respectively

H3 vs M3 H3 vs M6

Treatment EPG (%) Treatment EPG (%)

H3:M3 H3:M6

100:0 19.2 ± 2.9 ab 100:0 19.9 ± 3.4 a

99:1 13.3 ± 4.6 ab 99:1 12.0 ± 2.9 b

90:10 21.8 ± 11.0 a 90:10 6.4 ± 4.2 bc

50:50 16.6 ± 9.1 ab 50:50 6.8 ± 4.2 bc

10:90 5.2 ± 5.0 b 10:90 5.6 ± 5.9 bc

1:99 6.6 ± 7.9 ab 1:99 0.8 ± 3.0 c

0:100 − 13.7 ± 1.6 c 0:100 − 9.4 ± 4.2 d

First→ Second First→ Second

H3→H3 15.2 ± 9.0 a H3→H3 16.6 ± 6.9 a

H3→M3 9.9 ± 6.2 a H3→M6 3.1 ± 4.0 bc

M3→H3 10.2 ± 7.5 a M6→H3 5.5 ± 4.2 b

M3→M3 − 13.8 ± 5.7 b M6→M6 − 5.2 ± 4.4 c
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various initial populations. We began the experiments by in-
vestigating the colonization dynamics of each bacterial strain
in non-competitive conditions. The bacterial strains used in
this study (A. magnusonii H3, A. ursingii M3, and
A. excentricusM6) are species that have been frequently isolated
from or abundantly detected in the phytosphere of duckweed
[22, 43, 50, 51]. They quickly colonized L. minor and main-
tained their populations without the external addition of growth
substrates (Fig. 1). Although there were some differences in
distribution tendency and morphology of colonized cells
(Figs. 4 and 5), the results indicate that all three strains are able
to colonize L. minorwith similar abundance and kinetics. It was

estimated from the duckweed frond number and colonization
density that bacterial cells attached to plants at 7 days were
10–104 times larger than those inoculated. Hence, the cells of
each bacterial strain grew during the experiments, probably by
utilizing plant exudates. Interestingly, only two bacterial strains
that showed relatively high biofilm formation ability (M3 and
M6; Fig. 6a) formed biofilm structures on the duckweed surface
(Fig. 5), and two motile strains (H3 and M6; Fig. 6b) showed
notably more rapid colonization as inoculation density increased
(Fig. 1), which suggests the involvement of bacterial biofilm
formation ability and swimming motility in plant colonization
in the aqueous phase.

Fig. 5 SEM micrographs of
bacterial strains that colonized
L. minor. a, b Strain H3 on the
underside of the frond. c Biofilm
of strain M3 on the root. d
Biofilm of strain M6 on the
underside of the frond. Contrasts
of images were modified for
better visualization

Fig. 4 Distribution of bacterial strains colonized on L. minor. The cell
numbers of bacterial strains attached on the mother frond (MF), daughter
frond (DF), upper root (UR), and root tip (RT) are shown relative to the
fresh weight of the whole plant bodies. MF is defined as the oldest frond
of the L. minor colony with approximately 3–4 fronds, and the remaining

fronds are defined as DF. RT indicates the root part within 5 mm from its
tip. The roots other than RT are defined as UR. Results are shown as the
means of cell numbers attached to plants (mg−1) after 7 days of co-culti-
vations. Error bars show the standard deviations (n = 3)
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We also found that the outcomes of co-colonization on
plants were strongly dependent on the kind of bacteria inocu-
lated to the plant rather than the inoculation regime (Figs. 2
and 3). In particular, in the co-inoculation of strains H3 and
M3, strain H3 tended to exclude strain M3 as time passed.
Similar population dynamics have frequently been reported
in previous studies using terrestrial plants [40, 52], which
attributed the phenomena to the hierarchy in bacterial compet-
itive abilities. We also assume a superior competitive plant
colonization ability of strain H3 compared with strain M3.
In contrast, a quite resilient co-existing relationship was ob-
served between strains H3 andM6. The immediate population
shifts shown in Figs. 2 and 3 strongly suggest that strains H3
and M6 occupy different ecological niches, e.g., space and/or
substrates, thus reaching constant abundance without inten-
sive competition. Although such niche sharing is theoretically
considered a principal mechanism to maintain species diver-
sity in the same environment [53], to the best of our knowl-
edge, there are very few studies that have experimentally dem-
onstrated such phenomena among a pair of plant-associated
bacteria. Hence, the interaction of strains H3 andM6would be
a good example to study niche sharing in the phytosphere.
Because strains H3 and M6 showed similar distribution pat-
terns on the plant in both single- and co-inoculation conditions
(Fig. 4) and a lot of unoccupied space remained on the duck-
weed surface (Fig. 5), we can speculate that the capacity to
utilize plant exudate play a key role in this niche sharing rather

than space segregation. Although there was no clear food
segregation observed between strains H3 and M6
(Table S2), further analysis of resource utilization by plant-
associated bacteria, which is specialized for plant exudate
components, could contribute to the deeper understanding of
the diversity of the phytosphere microbiome. Additionally, it
should be noted that although strain M6 had entirely no effect
on the abundance of strain H3, the colonization of strain M6
significantly decreased in competitive conditions (Figs. 2 and
3). Therefore, we consider that there is some niche overlap
between these strains, wherein strain H3 is more competent.

Throughout the colonization assays, strain H3, a PGPB
of duckweed, efficiently maintained its population and
also reduced the abundance of PGIB strains. Because
strain H3 did not show one-sided growth inhibition
against M3 and M6 colonies (Fig. 6c, d), this may be
attributed to the competitive use of available niches in
the phytosphere of duckweed. Concerning this, the
growth-promoting effect of strain H3 was also observed
even in co-inoculation conditions (Table 1). It is worth
noting that only 1% inoculation of strain H3 could signif-
icantly improve L. minor growth, probably both by
exerting its beneficial effects and by reducing the negative
effects of PGIB strains. In addition, the growth speed of
L. minor seemed to reflect the abundance or proportion of
strain H3 during the cultivation terms (Figs. 2 and 3). Our
previous study characterized strain H3 as a robust PGPB

Fig. 6 Phenotypic
characterization of bacterial
strains. a Biofilm-forming abili-
ties assayed in 1.5-mL polypro-
pylene tubes. Different letters in-
dicate significant differences
among values. Error bars show
the standard deviations (n = 3). b
Colony morphology of bacterial
strains grown on 0.2% agar 1/10
LB medium supplemented with
0.1% casein hydrolysate. c, d
Interactions between neighboring
colonies of strains H3–M3 and
H3–M6 growing on 1.5% agar
LB medium
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that can exert a growth-promoting effect in the presence
of a variety of other bacterial strains [15]. This study
further confirms the previous results and, moreover,
shows the relevance of competition and colonization abil-
ity in its robust growth-promoting ability. Because there
are several genes that may contribute to plant colonization
in the genome of strain H3 [54], identifying important
genes for aquatic plant colonization should be a focus of
future research.

This study reports highly consistent exclusive and co-
existing relationships among duckweed-associated bacteria.
Although only a few examples are shown, the population
dynamics observed here demonstrate the important ecological
processes that drive bacterial community assembly on aquatic
plant surfaces. We believe that the results also have some
important implications for the practical use of bacterial inoc-
ulants in aquatic plant systems. First, the competition between
strains H3 and M3 suggests that poorly competitive species
are readily excluded from the phytosphere, even when abun-
dantly inoculated or preliminarily allowed to colonize the
targeted plant. Hence, the use of innately competitive inocu-
lants is important; otherwise, the beneficial effects would fade
away in shorter periods. Second, the co-existing relationship
between strains H3 and M6 suggests that the preferred niche
of bacterial species is also a critical factor for the successful
colonization of inoculants. Therefore, deciphering the variety
of niches in the phytosphere environment would contribute to
the deeper understanding and effective engineering of plant-
associated microbiomes. For example, the combined use of
inoculants [55] may be optimized using species with different
preferred niches. Moreover, our study also supports the use-
fulness of duckweed as a tool to study plant–microbe interac-
tions [56, 57].
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